熱擴無縫鋼管日前在路基分析中依然采用。隨著路面各結構層材料特性的明顯分化,這種理論的局限性逐漸凸顯年,提出了兩層結構的理論解,之后經多個研究者的努力形成了完整的多層路面結構理論,隨著世紀年代計算機技術的發展,多層路面結構理論得到了廣泛的應用,并成為日前各國普遍采用的瀝青路面分析設計理論由于路面結構材料特性和所處環境的復雜性,力學分析結果和路面結構中的實際受力在和言讓種常用的手段。這三種手段各有所長,需要綜合使用,才能準確反映路面結構性能的全貌為了便于分析,路面結構曾被簡化為多種模型,包括彈性半空間模型彈性多層結構模型,彈性地基包括多層地基板模型以及各層材料的非線性黏性,塑性的考慮等,本章僅簡要介紹彈性多層結構模型及其分析結果瀝青路面的力學特性彈性多層結構軸對稱模型及其理論解一般概念路面結構可以看作一種多層結構,圖是這種結構在圓形均布荷載作用下應力應變場的一般概念描述,圖中,分別為結構的層層,第層的厚度彈性模量和治松比期。
為路基的彈性模量和泊松比,熱擴無縫鋼管和音分別為垂直荷載的壓力集度和作用半徑對圖的路面結構,在進行力學分析時一般做如下假設:路面結構由多個性能不同的層次組成,在圓形均布荷載的作用下,呈現軸對稱的特性每個層次都是由均質的,各向同性的線彈性材料組成,材料性能可采用彈性模量和泊松比表征結構的下層為在水平方向上無限大,豎向方向向下無限深的半無限體,且無限處的應力和位移為零;其上各層為在水平方向上無限大方向上有一定厚度的層次各層間接觸條件可以有多種狀況:層間位移完全連續,此時稱為連續體系;層間豎個,包括個法向應力,和對剪應力,,由于圖是關于軸的軸對稱結構,各應力應變和位移分量也關于該軸對稱,并且是和的函數,此時,在圓柱坐標系統中,各點應力應變的物理方程為,式中,分別為單元體的正應變,—單元體的剪應變單元體的剪切彈性模量根據單元體的各應力分量,可按下面的一元三次方程式求解單元體的三個主應力:+式中應力不變量—應力不變量。
—第三應力不變量解出式的三個實根,從大到小記為,即為單元體的三個主應力,然后可按式計算該單元體的大剪應力:上述工作均可由計算機來完成,國內如同濟大學,廣西壯族自治區交通運輸廳,哈爾為了更好地理解路面結構的力學計算過程,分析熱擴無縫鋼管不同因素對結構的應力應變和位移的影響,下面介紹兩層三層層間連續路面結構的手工計算方法兩層路面結構的力學計算假定路基為彈性半無限體,上面的路面結構層為材料的彈性參數與路基不同的均勻層次,這便構成了一個兩層路面結構,或稱雙層路面結構。